
1. (21 points) Circle True or False. Do not justify your answer.

(a) True or False : DHCP spoofing can be prevented by using Ethernet instead of
wireless.

Solution: DHCP requests and responses are broadcast.

(b) True or False: SYN Cookies help defend against distributed syn flooding at-
tacks.

(c) True or False: Source port randomization is a helpful defense against Kaminsky
blind spoofing.

(d) True or False : An off-path attacker is more powerful than an on-path attacker:
anything an on-path attacker can do, so can an off-path attacker.

(e) True or False: An on-path attacker is more powerful than an off-path attacker:
anything an off-path attacker can do, so can an on-path attacker.

(f) True or False : Internet censorship requires an in-path attacker (i.e., an on-path
attacker that can both observe all packets and also drop any packets the censor
wishes).

Solution: As we saw in the lecture on Internet censorship, an on-path attacker
(who can observe all packets but not drop packets) can censor connections.

(g) True or False: If you use HTTPS but not DNSSEC, the confidentiality of data
you send over HTTPS is protected against on-path attackers (ignoring implemen-
tation bugs and/or CA failures).

Solution: Without DNSSEC, you might be connecting to the wrong server, but
even if you’re connecting to the attacker, the TLS connection will fail because
the attacker doesn’t have the right private key or cert to impersonate the real
server.

(h) True or False : If you use HTTP and DNSSEC, the confidentiality of data you
send over HTTP is protected against on-path attackers (ignoring implementation
bugs and/or CA failures).

Solution: DNSSEC only ensures that you’re sending packets to the correct IP
address. On-path attackers can observe the packets you send directly, even if
you send them to the correct server.

(i) True or False : CBC mode encryption provides both confidentiality and integrity.

Solution: It doesn’t provide integrity.

(j) True or False: CBC mode encryption provides confidentiality against chosen-
plaintext attacks (IND-CPA security).

Solution: See lecture notes.

(k) True or False : Using a pseudorandom number generator, seeded by the current
time of day (measured to microsecond precision), is a good way to generate an AES
key.

Solution: Such a seed is guessable, enabling brute-force attacks to recover the
AES key.

(l) True or False: Cryptography is a reasonable defense if an adversary might be
able to eavesdrop on network packets.

(m) True or False : Stack canaries are a good defense against heap-based buffer
overflows.

Solution: They’re aimed at overflows of stack-allocated buffers; an overflow of
a buffer in the heap won’t overwrite the canary and won’t be detected by the
stack canary defense.

(n) True or False : Fuzz-testing requires access to source code to find vulnerabilities.

Solution: Fuzz-testing doesn’t require access to source code; you can fuzz test
a binary.

(o) True or False: Prepared statements are a good defense against SQL injection.

(p) True or False : Setting the “secure” flag on a cookie (so it will only be sent over
HTTPS) is a good defense against CSRF.

(q) True or False : TLS does not provide confidentiality if you use a TCP imple-
mentation whose TCP initial sequence numbers are predictable.

(r) True or False : Access control ensures that authorized users who have access to
sensitive data won’t misuse it.

Solution: Access control only limits which users can access the data; it can’t
restrict what they do with the data, once they have it.

(s) True or False : Alice wants to communicate with Bob using Tor with 3 inter-
mediaries. If the first 2 intermediaries are dishonest, they will be able to determine
that Alice and Bob are communicating.

Page 2

Solution: They can see packets coming from Alice, but can’t tell where they
are going (they can see that they’re going towards the 3rd intermediary, but
can’t tell where they’ll go from there).

(t) True or False : When a client sends a message over the Tor network, Tor’s onion
routing works because each intermediary encrypts the message they receive with the
public key of the following intermediary, so no one else can decrypt the messages.

Solution: All encryption is done by the client, not by the intermediaries. The
client encrypts multiple times, in a nested fashion, once per intermediary; each
intermediary then removes one level of encryption.

(u) True or False: The homomorphic properties of encryption allow servers to com-
pute products or sums of encrypted data without having to decrypt it, as long as
the data is encrypted with the right encryption algorithm.

Solution: e.g., RSA or Paillier.

2. (12 points) You are doing a security test of a website, ShopSMart.com. In each part be-
low, based on the symptoms you observe, give the name of the type of vulnerability that
is most likely responsible for those symptoms. Write just the name of the type/category
of vulnerability (e.g., “buffer overrun”); you don’t need to write a detailed description
of the specific attack or vulnerability.

(a) You try to sign up for an account and type Can’t stop the signal into the text
field for entering your last name. When you click the button to submit the form,
you see an error page that mentions a syntax error in the database query.

What type of vulnerability does this most likely indicate?

Solution: SQL injection

(b) You sign up under your real name, then place an order for 65539 bookmarks: you
add the bookmark to your cart and enter a quantity of 65539. You place the
order. A week later, a giant package arrives at your doorstep containing 65539
bookmarks. You check your credit card bill, and you see you’ve only been charged
for 3 bookmarks.

What type of vulnerability does this most likely indicate?

Solution: Integer overflow or integer conversion vulnerability (other answers
may be valid as well).

(c) ShopSMart.com has a one-click buy feature: on the web page for each item, there
is a button labelled “Buy instantly!”. If you click that button while logged in, it

Page 3

instantly places an order for the item and charges your credit card on file, without
requiring you to go through any other web pages (there’s no separate checkout
page, no confirmation page—the order is placed immediately). You view the HTML
source for the page for the bookmark, and you see

<FORM ACTION="http://shopsmart.com/instantbuy&item=bookmark">

<BUTTON TYPE="submit" VALUE="Buy instantly!">

</FORM>

You know this means that when the button is clicked, the browser will load the
page http://shopsmart.com/instantbuy&item=bookmark. Looking through the
rest of the page source, the page doesn’t appear to contain any Javascript.

What type of vulnerability does this most likely indicate?

Solution: CSRF.

3. (8 points) You have a secure cryptographic hash function H : {0, 1}2n → {0, 1}n that
takes 2n-bit inputs and outputs a n-bit digest. You want to create a secure cryptographic
hash function F : {0, 1}4n → {0, 1}n that takes 4n-bit inputs and outputs a n-bit digest.
How could you do this? Fill in the definition below, assuming w, x, y, z are each n-bit
values:

Solution: F (w, x, y, z) = H(H(w, x), H(y, z) or F (w, x, y, z) = H(w,H(x,H(y, z)))
or F (w, x, y, z) = H(H(H(w, x), y), z), etc.

Also fine: F (w||x||y||z) = H(H(w||x)||H(y||z)), etc.

(Don’t explain or justify your answer.)

4. (12 points) (a) A code injection attack is one that involves attacker-chosen code being
introduced into an application and then executed. Which of the following attacks
are a form of code injection attack? Circle all that apply.

1. Buffer overflow

2. Port scanning

3. Kaminsky-style blind spoofing of DNS responses

4. CSRF

5. TCP SYN flooding

6. Clickjacking

7. XSS

8. Browser-in-browser attacks

9. None of the above

Page 4

(b) In iOS, each app runs with the userid mobile. In Android, each app runs with a
unique userid specific to that app. Which of these two better follows the principle
of least privilege? Why?

Solution: Android. Each userid can be assigned a different set of permissions.

5. (12 points) The Chrome browser contains a built-in filter which attempts to block cer-
tain attacks. When a user visits http://website.com/foo.html?name=value, Chrome
looks at the HTML response and checks all Javascript scripts in the page to see if any
of them are contained in (that is, a substring of) value; if so, Chrome refuses to execute
that script.

For each part, circle Yes or No, then explain in a sentence why or why not. Assume the
attacker doesn’t try to do anything special to bypass the filter.

(a) Will this stop reflected XSS attacks?

Yes No

Explanation:

Solution: Yes (at least some): they involve malicious data being copied from
value into the response.

(b) Will this stop stored XSS attacks? (Stored XSS is also known as persistent XSS.)

Yes No

Explanation:

Solution: The malicious data in the HTML response comes from the database,
not from a URL parameter.

(A prior request causes malicious data to be stored into the database; then later
the victim visits a page that causes it to be copied from the database to the
HTML response. That’s two requests. Neither one will be blocked by Chrome.)

(c) Will this stop CSRF attacks?

Yes No

Explanation:

Solution: In CSRF the harm is done by the server acting on the request; the
response is irrelevant.

6. (15 points) (a) When users of bank.com are logged in, a request to bank.com/session.js
returns a Javascript file containing

Page 5

var session_id = "0123456789";

except that 0123456789 is replaced with the session ID for the user who made the
request.

An attacker controls evil.com and would like to learn Alice’s session ID for bank.com.
How can the attacker do this? Explain why the same-origin policy doesn’t stop this
attack. (Assume the attacker can get Alice to visit evil.com.)

Solution: Put <SCRIPT SRC="http://bank.com/session.js"> into evil.com’s
page, followed by Javascript that reads the session_id variable and sends it
back to evil.com. Allowed because of the special exception in the same-origin
policy for scripts.

(It’s fine to assume Alice is logged in for this part; otherwise, no attack is
possible.)

(b) When bank.com learns of this problem, they fix it by beginning all Javascript files
with

if (!document.location.includes("http://bank.com")) {

while (1) {} // infinite loop

}

Explain why this doesn’t work. How could an attacker defeat this defense?

Solution: An attacker could put malicious stuff on http://bank.com.evil.com/,
or on http://evil.com/foohttp://bank.com/.

(c) Propose better Javascript code to put at the start of all Javascript files.

Solution:

if (!document.location.startsWith("http://bank.com/")) {

while (1) {} // infinite loop

}

or

if (document.domain != "bank.com")) {

while (1) {} // infinite loop

}

or some similar solution.

We’re not testing you on your knowledge of specific Javascript APIs, so it was
fine to make up method names if you didn’t know what methods to use, as long
as your intent is clear.

7. (18 points) Tracy proposes a new mode of operation for AES encryption, which we’ll call
the Tracy block chaining (TBC) mode. The message M is split into 16-byte blocks, M =

Page 6

M1||M2|| · · · ||Mk. The ciphertext C = C0||C1|| · · · ||Ck is computed as follows: we pick a
random 16-byte IV, let C0 = this IV, let M0 = this IV, and define Ci = Ek(Mi−1 ⊕Mi)
for i = 1, 2, . . . , k. Here Ek(·) denotes encryption of a single block using the AES block
cipher and Dk(·) denotes decryption of a single block using the AES block cipher.

(a) Define the decryption algorithm. If the ciphertext is C0||C1|| · · · ||Ck, give an equa-
tion specifying how the recipient can recover M1, . . . ,Mk as a function of the Ci’s:

Solution: Mi = Dk(Ci)⊕Mi−1.

Mi = Dk(Ci)⊕Dk(Ci−1)⊕ . . .⊕Dk(C1)⊕ C0 would also be fine.

(b) Is TBC mode IND-CPA secure? Why or why not? Circle “yes” or “no”, then justify
your answer.

Yes or No

Justification:

Solution: There are many possible justifications. Here are a few examples, any
one of which would be sufficient:

• The plaintext 0||Y will be distinguishable from X||Y (the ciphertext for
the former will have C1 = C2).

• The plaintext X||X||X is distinguishable from X||Y ||Z. (The last two
blocks of ciphertext will be identical, for the first plaintext.)

• If you send the same message twice, all but the first 32 bytes of the ci-
phertext will be identical both times.

(c) Alice encrypts the message M = cs161 is so easy using TBC. M is 16 bytes, and
Alice uses no padding, so here k = 1. Let the resulting ciphertext be C = C0||C1.

Alice sends C to Bob.

Mallory is a man in the middle. Mallory wants to tamper with this ciphertext and
replace it with some other ciphertext C ′, so that when Bob decrypts C ′, he will
receive M ′ = cs161 is so hard. Can Mallory do this? Circle “yes” or “no”, then
justify your answer: if you circled yes, describe the modified ciphertext C ′ that
Mallory should send; if you circled no, explain why Mallory can’t do it.

Yes or No

Justification:

Solution: C = C ′0||C1 where C ′0 = C0 ⊕M ⊕M ′.

8. (20 points) The TLS specification says that, during the handshake, the browser should
send a random 256-bit number RB and the server should send a random 256-bit number

Page 7

RS. This question asks about the consequences if a browser or server fails to implement
this correctly. Each part is independent. Assume the browser and server use RSA-based
key exchange (not Diffie-Hellman).

(a) Suppose Alice downloads a buggy version of the Chrome browser that implements
TLS incorrectly. Instead of picking RB randomly, it increments a counter and sends
it instead. Which of the following attacks are possible? Circle all that apply.

1. A man-in-the-middle can compromise Alice’s confidentiality (e.g., learn the
data she sends over TLS).

2. If Alice visits a HTTPS URL, a man-in-the-middle can successfully replay that
HTTP request to the server a second time.

3. If Alice visits the same HTTPS URL twice, when Alice visits that URL the
second time a man-in-the-middle can successfully replay the HTML page that
was returned by the server on Alice’s first visit.

4. A man-in-the-middle can learn the symmetric MAC keys that protect data sent
over TLS connections initiated by Alice’s browser.

5. None of the above

Solution: None will be possible. Even if RB were to repeat, Alice would choose
a different pre-master secret each time and thus they’ll end up with different
symmetric keys for each different connection, so it’s not possible for a MITM
to replay an HTML page returned on a prior connection.

(b) Alice downloads a patch for her buggy version of Chrome, which fixes the previous
problem but introduces another bug. Now, her client generates the pre-master secret
by incrementing a counter. Which of the following attacks are possible? Circle all
that apply.

1. A man-in-the-middle can compromise Alice’s confidentiality (e.g., learn the
data she sends over TLS).

2. If Alice visits a HTTPS URL, a man-in-the-middle can successfully replay
that HTTP request to the server a second time.

3. If Alice visits the same HTTPS URL twice, when Alice visits that URL the
second time a man-in-the-middle can successfully replay the HTML page that
was returned by the server on Alice’s first visit.

4. A man-in-the-middle can learn the symmetric MAC keys that protect data
sent over TLS connections initiated by Alice’s browser.

5. None of the above

Solution: The MITM can recover the pre-master secret by brute-forcing it,
infer the symmetric keys, and then all security is lost. For example, an attacker

Page 8

can decrypt all the traffic Alice sent over TLS, and then inject it into a new
TLS session from Alice (encrypted and MAC’ed with the proper keys for that
connection, which can also be recovered in the same way).

Replay means that the recipient receives the message a second time. (Suc-
cessfully means that the recipient doesn’t reject/detect the message when it is
replayed, i.e., that the second copy is accepted as if it were intended to be sent
by Alice.)

(c) Alice downloads an updated version of Chrome that is finally correct. With her fixed
browser, she visits https://lazycodrz.com/. That server’s TLS implementation
has a bug: instead of picking RS randomly, it always sends all zeros. Which of the
following attacks are possible? Circle all that apply.

1. A man-in-the-middle can compromise Alice’s confidentiality (e.g., learn the
data she sends over TLS).

2. If Alice visits a HTTPS URL, a man-in-the-middle can successfully replay
that HTTP request to the server a second time.

3. If Alice visits the same HTTPS URL twice, when Alice visits that URL the
second time a man-in-the-middle can successfully replay the HTML page that
was returned by the server on Alice’s first visit.

4. A man-in-the-middle can learn the symmetric MAC keys that protect data sent
over TLS connections initiated by Alice’s browser.

5. None of the above

Solution: Attack 2 is possible because the symmetric keys are derived as a
function of the pre-master secret, RB, and RS. If the MITM replays the entire
handshake to the server, the pre-master secret and RB will automatically be
identical; and due to the bug in the server, RS will be identical as well, so the
same symmetric keys will be derived, and encrypted and MAC’ed data from the
prior connection can be replayed a second time.

9. (14 points) In older versions of iOS, the implementation of malloc() looked approxi-
mately like this:

struct malloc_header {

size_t len;

}

void * malloc(size_t len) {

struct malloc_header *hdr;

size_t n;

n = sizeof(malloc_header) + len;

// (*)

Page 9

hdr = system_alloc(n); // allocate n bytes of memory

hdr->len = n;

return hdr + 1;

}

You can assume the call to system_alloc() will never fail; it always succeeds in allo-
cating n bytes of memory. You can also assume this runs on a 32-bit architecture and
size_t is a 32-bit value.

void free(void *p) struct mallocheaderhdr = p;hdr = hdr− 1; systemfree(hdr, hdr− >
len);

(a) This implementation of malloc() could create a security problem for apps. Give an
example of an invocation of malloc() that could be problematic. Make sure to show
a specific value for malloc()’s parameter (it’s OK to use hex or a mathematical
expression). Explain briefly why this causes a problem.

Solution: malloc(232 − 1)

This causes an integer overflow when calculating n, so it will allocate many fewer
bytes than the app is expecting.

Answers of 232 − 2 and 232 − 3 were also valid. 232 − 4 is valid if you assume
that system_alloc(0) returns a zero-byte buffer rather than NULL (a reasonable
assumption).

Some people asked about the type of the argument to system_alloc(). Even
if the type were uint64_t (which seems unlikely, given that we’re on a 32-bit
system), the code would still be buggy. The integer overflow happens when as-
signing to n, which is a size_t, so by the time this is passed to system_alloc(),
the overflow has already happened and the damage is inevitable.

(b) Fix this problem by adding some extra code at the line marked (*). What C code
should we add there?

Solution:

if (n < sizeof(struct malloc_header))

return NULL;

or

if (n < len)

return NULL;

An answer like

if (n < 4)

return NULL;

is not so good. It’s better not to hardcode an assumption about the size of a
struct malloc_header: if the compiler decides to insert padding bytes into

Page 10

the struct, so the struct is 8 bytes long, then this code will be insecure.

10. (18 points) After doing Project 2, Neo decided to make a simple version of the Part 1
client that runs in the browser using only JavaScript. Neo calls his new service Crypto-
Catalog. It gives each registered user a single encrypted text file. The encrypted file is
stored on the CryptoCatalog server (which is untrusted, like the storage server in Project
2). There is no sharing or revocation, and there is only one file per user.

A new user visits CryptoCatalog.com and creates an account (setting a username and
password). After logging in, the CryptoCatalog JavaScript code prompts the user for
their encryption passphrase (which is different from their login password). Using that
passphrase, it generates two 128-bit symmetric keys, kc and ki, for confidentiality and in-
tegrity, by hashing the passphrase 10,000 times with SHA-256: H(H(...H(passphrase)...))
= kc || ki. The JavaScript code gets the encrypted file from the server, and then au-
thenticates and decrypts it using ki and kc. Whenever the user saves the file, the new
contents are encrypted using AES-CBC under kc and then the ciphertext is MAC’d using
HMAC-SHA256 under ki.

(a) Can evil.com read the plaintext file of a user of CryptoCatalog, if the user doesn’t
visit evil.com? Briefly, why or why not?

Solution: No, evil.com won’t know the keys. Or, No, assuming the user has
chosen a good passphrase, as evil.com can’t guess the keys.

(b) Can evil.com read the plaintext file of a user of CryptoCatalog, if the user visits
evil.com (but doesn’t interact with evil.com at all)? Briefly, why or why not?

Solution: No, the same-origin policy doesn’t give evil.com any special access
to CryptoCatalog.com.

Or, No, assuming the user has chosen a good passphrase, due to same-origin
policy.

(c) Evil.com was able to steal a copy of CryptoCatalog’s database of encrypted files.
How could evil.com decrypt at least some of the files?

Solution: Guess passphrases using a dictionary attack with common pass-
words.

(d) Suppose evil.com manages to compromise the CryptoCatalog servers and gains
complete control over them. How can evil.com break the confidentiality of all of
CryptoCatalog’s users’ files?

Page 11

Solution: Have CryptoCatalog.com send malicious Javascript to the users.

The malicious Javascript could capture the passphrase and send it to evil.com.

(e) With regard to the previous question, why is the web version, CryptoCatalog, more
vulnerable than your Project 2 client?

Solution: Because the CryptoCatalog server can change the client Javascript
code, whereas in Project 2 the server can’t modify your client code.

(Another difference: your Project 2 code used randomly generated symmetric
keys, whereas this derives them from a passphrase.)

11. (24 points) You’re sitting in a coffee shop enjoying a mocha latte and some relaxing
computer security reading online at http://awesome-security-stuff.com. You’re
connected on the coffee shop’s wifi network.

(a) Assuming you are only browsing http://awesome-security-stuff.com, who is
potentially able to observe what articles you are reading? Circle all that apply.

1. Other coffee shop patrons

2. The manager of the store next door to the coffee shop who occasionally leeches
off of the coffee shop’s wifi

3. Your friend in a dorm a few miles away

4. The coffee shop’s ISP

5. The website awesome-security-stuff.com

6. None of the above

(b) Name two technologies that could reduce the number of parties in part (a) that can
observe your traffic. Do not give explanations, simply write down their names.

Solution: Any two of TLS (HTTPS), WPA (encrypted Wifi), VPN, Tor.

(c) If you use both the technologies you listed in part (b), who will still be able to know
a complete list of all the articles you view?

1. Other coffee shop patrons

2. The manager of the store next door to the coffee shop who occasionally leeches
off of the coffee shop’s wifi

3. Your friend in a dorm a few miles away

4. The coffee shop’s ISP

5. The website awesome-security-stuff.com

6. None of the above

Page 12

Solution: If you wrote Tor in part (b), you should circle item 6 (None of the
above), as Tor prevents the website from knowing who is reading each article.
Otherwise, you should circle item 5 (the website), as with TLS, WPA, and/or
a VPN, awesome-security-stuff.com still sees what articles you read.

(d) You notice that each article has a Facebook Like button icon, loaded from facebook.com,
allowing you to indicate on Facebook that you enjoyed this article. If Facebook
wanted to, could it track what articles you are visiting, if you don’t click on the
Like button? Circle yes or no, then explain why or why not.

Yes No

Explanation:

Solution: Your browser loads the icon by making a request to Facebook, and
that request will send the cookies for facebook.com, so if you’ve ever logged
onto Facebook in the past, Facebook can tell you visited that article.

Some clarifications:

• It’s perhaps most obvious that this is possible if you are logged on, so a
simple answer is to say, yes, if you’re logged on to Facebook.

• Even if you’re logged off, Facebook can probably still track what arti-
cles you’re visiting. If you log on, then log off, your browser will likely
still retain cookies for facebook.com that allows Facebook to continue to
uniquely identify you (and link you to your prior login). Those will be
sent with the request to load the Like button icon, so Facebook can iden-
tify you at that point—even if you’ve since logged off. That said, this is
probably academic. Based on how Facebook is designed, most Facebook
users are probably logged on to Facebook essentially all the time, even if
they’re not actively using Facebook right then.

• When your browser sends a request to Facebook for the Like icon, the
Referer header will list which article you’re reading, so Facebook can see
which article you’re reading (from the Referer) and identify you (from
the cookies sent with the request).

(e) The coffee shop only allows you to surf online for 30 minutes, but you usually like
to spend more than that there.

After 30 minutes, you notice that visiting any URL in the browser results in a
blocked page (indicating you can no longer browse the Internet). However, you
notice you are able to successfully ping any valid domain name. Describe how you
might prepare to surf for longer in the future.

Page 13

Solution: Set up a server to help you tunnel IP over DNS.

Or, ICMP tunneling (since you can ping).

12. (26 points) Sarah is using a laptop on her home network to browse the Internet over
HTTP. Consider an adversary with a smartphone and an Internet connection and the
following capabilities:

A. No additional capabilities
B. A $10k GPU compute cluster
C. Can compromise Sarah’s home router
D. Can compromise the primary nameserver for the zone
E. Can compromise the primary nameserver and offline signing key for the zone

(a) In the following table, mark with an X which attacks each adversary could suc-
cessfully perform against Sarah if everyone uses DNS: without DNSSEC:

A B C D

Spoof existence of records that
actually don’t exist in the zone

Spoof values of records that exist in
the zone

Spoof non-existence of records that
actually do exist in the zone

Enumerate all names in the zone

Answer: A B C D

Spoof1 X X Spoof2 X X Spoof3 X X Enum

A B C D

Spoof existence of records that
actually don’t exist in the zone

X X

Spoof values of records that exist in
the zone

X X

Spoof non-existence of records that
actually do exist in the zone

X X

Enumerate all names in the zone X

(b) Remember that when using DNSSEC, the zone is signed with a key that is not stored
on the primary nameserver. Instead, the key is stored at an “offline” location. Also,
NSEC records sign each adjacent pair of names in the zone. In the following table,
mark with an X which attacks each adversary could successfully perform against
DNSSEC with NSEC records:

Page 14

A B C D E

Spoof existence of records that
actually don’t exist in the zone

Spoof values of records that exist in
the zone

Spoof non-existence of records that
actually do exist in the zone

Enumerate all names in the zone

Answer: A B

C D E Spoof1 X Spoof2 X Spoof3 X Enum X X X X X

A B C D E

Spoof existence of records that
actually don’t exist in the zone

X

Spoof values of records that exist in
the zone

X

Spoof non-existence of records that
actually do exist in the zone

X

Enumerate all names in the zone X X X X X

(c) NSEC3 records were introduced to fix certain issues with NSEC records: each
name in the zone is hashed, the hashes are sorted, and each NSEC3 record signs
an adjacent pair of hash digests. In the following table, mark with an X which
attacks each adversary could successfully perform against DNSSEC with NSEC3
records:

A B C D E

Spoof existence of records that
actually don’t exist in the zone

Spoof values of records that exist in
the zone

Spoof non-existence of records that
actually do exist in the zone

Enumerate all names in the zone

Answer: A B

C D E Spoof1 X Spoof2 X Spoof3 X Enum X X X

Page 15

A B C D E

Spoof existence of records that
actually don’t exist in the zone

X

Spoof values of records that exist in
the zone

X

Spoof non-existence of records that
actually do exist in the zone

X

Enumerate all names in the zone X X X

(d) NSEC5 records are a further improvement. They work as follows.

When signing a zone, for each name n in the zone, compute R(n) = H(SignK(n))
where K is a secondary RSA private key and H is a secure cryptographic hash
function. The secondary signing key K is separate from the main key used to sign
the zone. Sort all the R values in the zone and sign each consecutive pair (Ri, Ri+1)
using the primary signing key. The signed zone and the secondary signing key are
stored on the primary nameserver.

When answering a query for a non-existent name n, the nameserver responds with
SignK(n) (generated on-the-fly) and the NSEC5 record that represents the gap
containing R(n).

In the following table, mark with an X which attacks each adversary could suc-
cessfully perform against DNSSEC with NSEC5 records:

A B C D E

Spoof existence of records that
actually don’t exist in the zone

Spoof values of records that exist in
the zone

Spoof non-existence of records that
actually do exist in the zone

Enumerate all names in the zone

Answer: A B

C D E Spoof1 X Spoof2 X Spoof3 X Enum X X

Page 16

A B C D E

Spoof existence of records that
actually don’t exist in the zone

X

Spoof values of records that exist in
the zone

X

Spoof non-existence of records that
actually do exist in the zone

X

Enumerate all names in the zone X X

Page 17

